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Abgract- This paper presents the development of a signal
averaging algorithm for recovering excitation responses
contaminated by overwhelming amount of various types
of interference in skin admittance measurements. The
algorithm is designed to eliminate Gaussian-distributed
noise by use of a recursive approach. The process of
recovering low magnitude voltage responses from highly
noise-contaminated waveforms is a CPU-intensive task. In
real -time measur ements, iterative reconstruction
algorithm is ineffident and time consuming when sow
varying input waveforms are present. To increase the
quality of the reconstruction a consderably large number
of recursons is required. Increasng the number of
recursons is appropriate for batch processing of
measurement data. However, the algorithm consders
measurements in real-time, whereas required quality of
sgnal recongruction should be kept independent from
the number of recursions.

I.INTRODUCTION

For medical messurement systems choosing appropriate filter
specifications is not aways a draghtforward process. The
difficulty generdly arises from insufficient knowledge of the
unknown dignal  power spectrum  and the noise  power
gpectrum. The magor difficulty arises when noise dgnd is
randomly occurring with a wide frequency range that
overwhems the frequency range of the measured signd. In
this case the type of filter implementation is a dominant part
of the ovedl sysem design. Signd averaging provides
excdlent results for noise removd, when the dgnd is
corrupted by additive white Gaussan noise. Recently, there
have been many attempts to improve the denoising
perfoomance a gamdl sample sizes by usng datigticd
inference methods based on wavelet datisticd modds and
Bayesan edimation [11,12]. The proposed dgorithm is
rather different and will efficiently increase the SN ratio by
averaging out the unwanted signd, even with very low leve
of input sgna amplitudes.

I1.M EASUREMENT SETUP

Measurements were performed by simultaneous recording of
dry sin parameters. The skin parameters of interest, as
decribed in [2], ae D.C potentid, A.C conductance,
capacitance, and the changes in these caused by the reflex.
A.C measurements were performed by applying low
amplitude sinusoidd in the frequecy range of 0.1-1000 Hz.
The measurement circuit is based on threedectrode system
[7] with congtant current, which were designed to record
smultaneous individud messurement of dectrodes The
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measurement  responses a  different  frequencies were A/D
converted and recorded for denoising process by use of the
averaging dgorithm.

I11.M ETHOD

Sgnd averaging is often done by a dedicated computer after
A/D converson. However, averaging requires that a large
number of bits per unit time be processed. This, in turn,
requires a fat A/D converson and CPU -intensive digitd data
processing. The measurement system was simulated with
severd different system configurations, and several optimum
results were achieved. By repetitive additions of waveforms,
random noise samples tend to average to zero while the
amplitude of the desred sgnd increased with decreasing
system bandwidth and performance. It is assumed that the
random noise sgnd must not be corrdated with the desired
sgna. Overlapping frequency components are not cut off, on
the contrary, they are manipulated equaly, i.e, increased in
amplitude along with theinput signal.

In order to eiminate the random noise samples efficiently, it
was necessary to increese the number of additions. This
reduces the system bandwidth unduly and causes ungtable
conditions. To overcome such  Studtions,  additiona
operdtions have been gpplied in padld with the averaging
process. Fig. 1 illustrates an extreme stuation, where a 256
samples waveform with a S/N raio of 1/100 is given as the
input.

Noisy Input, S/N=1/100,Samples=256
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Fig. 1 Noise corrupted waveform with 256 samples and SN ratio of 1/100.
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The output waveform after averaging process is shown in Fg.
2, which shows that the averaging has its superficid result, in
which extreme ikes of random noiss have vanished
satisfactorily only after 50.000 recursions.

Recursions=50000, Samples=256
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Fig. 2 Aveaged waveform of the noise corrupted waveform with 256
samples. The corrupted waveform is nearly recondructed after  50.000
iterations.

IV. APPROACH

Le T denote the time for each waveform, and if M
waveforms of the noisecontaminated signal, each of duration
T will be averaged, N samples from each waveform must be
taken and sored, giving M ™ N samples in totd, then a
synchronized addition of the samples can be performed to
produce the average vdue of the M waveforms. The addition
of the samples can be exactly sychronised if the I' sample of

the first waveform (W) is taken a time t;, the " sample of
the second waveform (W) taken a time t, + T, and the i"

sample of the N" waveform (W) teken at time t, + NT .
As shown in the following Mathematica code dice, each
waveform (W) is an observed sample denoting a waveform
of a periodic sgnd contaning N discrete random noise and
measured signd samples.

NoiseSamp/: NoiseSamp[magn_]:= magn*Random[Real,{-1,1}]
InpSamp/: InpSamp[sampno_Integer,n

magn_,samps_Integer,freq_:1,Phase_:0] :=
N[Sin[2 Pi(sampno*freq+Phase)/samps],7]+NoiseSamp[nmagn]]

This function is a symmetrica implementation of a waveform
of whichthe haf period is caculated by,

N
o
W=a (S(i) + n(i))

i=1
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Where, S denotes the signd sample, n(i)the noise sample
of a random magnitude, and Wdenotes sum of these
quantities.

then
averaged to give the average vdue W, at the K" sample
position of M waveforms

Corresponding  samples  from esch waveform  are

m=t4w
k M < (n,r)

1£EnEN )]

where W, ) represents the " sample of the I waveform. In
the dmplex manner, the average vaue is cdculaed by
adding the waveforms W,...,W,, in a sampleby-sample

manner, and then dividing the sum by the number of
waveforms:

_ 1%

Yo :V _1W(n,r) n=1...,N

_ 140y

Yinwm) _V% 3_.1W<n,r) @)

where

W)= n"sample of the I waveform,

Yin.my= Average vaue of M waveforms containing
N samples each.

The agorithm was first implemented and tested by using the
following M athemtica code dice

Avr/: Avr[samples_Integer,recursions_Integer,
NoiseLvl_,Frq_:1,Phase_:0]:=
Block[{n = 0,r = 0, myi, iterator = 0,i, S,
FilteredWave, Signalin}, Array[W,samples];
InPut=Table[InpSampli,NoiseLvl,samples,Frg,Phase],
{i,0,samples -1 }];
Signalin = Table[InpSampli,0,samples,Frq,Phase], {i,0,samples - 1}];
For [r=1, r <= recursions, r++, For [n=0, n < samples, n++,
W[n]=W[n]+(InpSamp[n,NoiseLvl,samples,Frg,Phase] - W[n])/r];
iterator++;
If[Mod[iterator,10] ==0,
S=Table[W[myi], {myi,0, samples - 1}];

FiItéredWave=TabIe[VV[myi], {myi,0, samples - 1}];
Return [FilteredWave] ]

The M~ N noisy samples ae grouped into random
sanples to creste a random gpace of M obsarvabdle
waveforms defined as

\/\4 = X(l’l),...,X(l’N)
W, = X1 X2N)

W,

M :X(M,l)""X(M,N)
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or aranging the waveforms into N random observable
columns

a(1,1 O a(1,N O

g wy 2 g an) 2
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Thus, the average vadue of the random obsarvable columns
can be determined as

__ 14

S_L_Vraz-lx(ryl)

_ 1%

Sz—ﬁg.lx(ra

R

S\ —Vrale(r,N) ®

It is obvious thet the mean vaues S,---, S, construct the

sample meanof the M waveforms, W, ,-- - \W, i.e,

w={5.5,.5, }
M
(j%-r::LVV(fl) 9
Co M -
W :Mig.arzlvv(fvz) : (6)
Cow 3
&, Wen

A rather intuitive dternative of determining the sample mean
W may be acquired by taking average of each waveform as
a whole, and measuring the mean vdue of the averaged
waveforms. Thus, for theM waveforms

W, (7)

Qoz

W=t
M

1

_<
11,
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will yidd the average vdue, and the consequent averages for
each waveform with n sampleseach, i.e,

®

Recursive additions of M waveforms with N discrete samples
will yidd

—_ 18
=—agW
r Mra=l r-1
— 1Y
W ==8 W, n=1---.-N (9
Nn:l '
— 14y
2 (W + W, )
— 1Y
W:Va(x(n1)+ "‘X(nM))
r=1
— 14
W =— Xinr n= ’N
M 2-1 (") L
W:y(N,M) (10
V. CONCLUSIONS
Sampleby-sample  addition of two discretetime dgnds

deived as

Y(n,r) = Xl(n,r) + X2(n,r)
where

1)

Y(n,r) =sSum output of the n™ sample a the ™
recursion,
Xi(n,r) = n

sgnd V\{n] at the " recursion.

" input sample of the discretetime

Generdly, for M recursions the output sum iswritten as

Y
Y(N,M) =a (Wl(n,r) +W2(n,r)) n=1---,N

r=1

However, repetitive additions of discretetime samples have
produced undesired output levels, which might be difficult to
manipulate by dectronic circuits. Increesed number  of
recursons can cause noticesble degradation in  system
dynamics. We have therefore introduced an appropriate
expresson in order to keep the output under control. When
the interference was high and thousands of iterations were
required the control mechanism operaied well. Therefore, this
agorithm gpplies equaly wel to both batch processng and
red-time measurements.



Keeping this in mind, ressonable output levels were acquired
by modifying Equation 12. If, after each addition, the output
were scaed down by a certain factor, increasing repetitions
would not cause any growth in the output level. The equation
was therefore modified to provide stable charecteristics,

¥ aXnn - Y, )
-2 (nr) = Y(nr-1) o _
Y(N,M)_a r +Y(n,r-]);n_1i"'1N (13
r=1

where X,y is substituted for the input term W, and,

Yo 1) is substituted for the input term, Wy,

sum of the repetitions prior to the 1™ recurson. This
equation was applied in the sysem simulation, which
provided efficient sysem dynamics. Fig. 3 shows the result
of a red-time measurement; the noisy input, and the averaged
output after a2000 recursions of averaging process.

which is the

Fig. 3 Photo of a red-time measurement. Only noisy input and the averaged
output are shown.
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